martes, 22 de julio de 2014

Dispercion y Difraccion

                                                           Dispercion y Difraccion

Dispercion: Se denomina dispersión al fenómeno de separación de las ondas de distinta frecuencia al atravesar un material. Todos los medios materiales son más o menos dispersivos, y la dispersión afecta a todas las ondas; por ejemplo, a lasondas sonoras que se desplazan a través de la atmósfera, a las ondas de radio que atraviesan el espacio interestelar o a laluz que atraviesa el agua, el vidrio o el aire.
Se habla de dispersión, en términos generales, como el estado de un sólido o de un gas cuando contienen otro cuerpo uniformemente repartido en su masa (equivalente a la noción de disolución, que concierne a los líquidos).
Dispersión de la luz en dos prismas de distinto material.

En óptica: Cuando un haz de luz blanca procedente del sol atraviesa un prisma de cristal, las distintas radiaciones monocromáticas son tanto más desviadas por la refracción cuanto menor es su longitud de onda. De esta manera, los rayos rojos son menos desviados que los violáceos y el haz primitivo de luz blanca, así ensanchado por el prisma, se convierte en un espectro electromagnético en el cual las radiaciones coloreadas se hallan expuestas sin solución de continuidad, en el orden de su longitud de onda, que es el de los siete colores ya propuestos por Isaac Newtonvioletaíndigoazulverdeamarilloanaranjado y rojo (Así como, en ambos extremos del espectro, el ultravioleta y elinfrarrojo, que no son directamente visibles por el ojo humano, pero que impresionan las placas fotográficas). Es sabido desde la antigüedad que la luz solar, al pasar por cristales transparentes o joyas de varias clases, produce brillantes colores.

En meteorología: Desde el punto de vista químico, el aire es una dispersión gaseosa de oxígeno en nitrógeno. Asimismo, la niebla es una dispersión del agua en el aire. El arco iris, el halo y los espejismos son fotometeoros, causados por la dispersión de la luz por las gotitas de agua o los finísimos cristales de hielo que contenga la atmósferaen aquella zona donde se produzcan estos fenómenos.

Difraccion: 
 Es el fenómeno del movimiento ondulatorio en el que una onda de cualquier tipo se extiende después de pasar junto al borde de un objeto sólido o atravesar una rendija estrecha, en lugar de seguir avanzando en línea recta. La expansión de la luz por la difracción produce una borrosidad que limita la capacidad de aumento útil de un microscopio o telescopio; por ejemplo, los detalles menores de media milésima de milímetro no pueden verse en la mayoría de los microscopios ópticos. Sólo un microscopio óptico de barrido de campo cercano puede superar el límite de la difracción y visualizar detalles ligeramente menores que la longitud de onda de la luz.

Difracción.

En el espectro electromagnético los rayos X tienen longitudes de onda similares a las distancias interatómicas en la materia. Es posible por lo tanto utilizar la difracción de rayos X como un método para explorar la naturaleza de los cristales y otros materiales con estructura periódica. Esta técnica se utilizó para intentar descubrir la estructura del ADN, y fue una de las pruebas experimentales de su estructura de doble hélice propuesta por James Watson y Francis Cricken 1953. La difracción producida por una estructura cristalina verifica la ley de Bragg.
Debido a la dualidad onda-corpúsculo característica de la mecánica cuántica es posible observar la difracción de partículas como neutrones o electrones. En los inicios de la mecánica cuántica este fue uno de los argumentos más claros a favor de la descripción ondulatoria que realiza la mecánica cuántica de las partículas subatómicas.

Reflexion y Refraccion

                                                              Reflexion y Refraccion 
Si un rayo de luz que se propaga a través de un medio homogéneo incide sobre la superficie de un segundo medio homogéneo, parte de la luz es reflejada y parte entra como rayo refractado en el segundo medio, donde puede o no ser absorbido. La cantidad de luz reflejada depende de la relación entre los índices de refracción de ambos medios. El plano de incidencia se define como el plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (véase figura 1). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. Los ángulos de reflexión y refracción se definen de modo análogo.
Las leyes de la reflexión afirman que el ángulo de incidencia es igual al ángulo de reflexión, y que el rayo incidente, el rayo reflejado y la normal en el punto de incidencia se encuentran en un mismo plano. Si la superficie del segundo medio es lisa, puede actuar como un espejo y producir una imagen reflejada (figura 2). En la figura 2, la fuente de luz es el objeto A; un punto de A emite rayos en todas las direcciones. Los dos rayos que inciden sobre el espejo en B y C, por ejemplo, se reflejan como rayos BD y CE. Para un observador situado delante del espejo, esos rayos parecen venir del punto F que está detrás del espejo. De las leyes de reflexión se deduce que CF y BF forman el mismo ángulo con la superficie del espejo que AC y AB. En este caso, en el que el espejo es plano, la imagen del objeto parece situada detrás del espejo y separada de él por la misma distancia que hay entre éste y el objeto que está delante.

Si la superficie del segundo medio es rugosa, las normales a los distintos puntos de la superficie se encuentran en direcciones aleatorias. En ese caso, los rayos que se encuentren en el mismo plano al salir de una fuente puntual de luz tendrán un plano de incidencia, y por tanto de reflexión, aleatorio. Esto hace que se dispersen y no puedan formar una imagen.
Ley de Snell
Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano. En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.

Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad. Un ejemplo habitual es el de un objeto sumergido, observado desde encima del agua, como se muestra en la figura 3 (sólo se representan rayos oblicuos para ilustrar el fenómeno con más claridad). El rayo DB procedente del punto D del objeto se desvía alejándose de la normal, hacia el punto A. Por ello, el objeto parece situado en C, donde la línea ABC intersecta una línea perpendicular a la superficie del agua y que pasa por D.


En la figura 4 se muestra la trayectoria de un rayo de luz que atraviesa varios medios con superficies de separación paralelas. El índice de refracción del agua es más bajo que el del vidrio. Como el índice de refracción del primer y el último medio es el mismo, el rayo emerge en dirección paralela al rayo incidente AB, pero resulta desplazado.



Prismas
Cuando la luz atraviesa un prisma —un objeto transparente con superficies planas y pulidas no paralelas—, el rayo de salida ya no es paralelo al rayo incidente. Como el índice de refracción de una sustancia varía según la longitud de onda, un prisma puede separar las diferentes longitudes de onda contenidas en un haz incidente y formar un espectro. En la figura 5, el ángulo CBD entre la trayectoria del rayo incidente y la trayectoria del rayo emergente es el ángulo de desviación. Puede demostrarse que cuando el ángulo de incidencia es igual al ángulo formado por el rayo emergente, la desviación es mínima. El índice de refracción de un prisma puede calcularse midiendo el ángulo de desviación mínima y el ángulo que forman las caras del prisma.



Ángulo crítico

Puesto que los rayos se alejan de la normal cuando entran en un medio menos denso, y la desviación de la normal aumenta a medida que aumenta el ángulo de incidencia, hay un determinado ángulo de incidencia, denominado ángulo crítico, para el que el rayo refractado forma un ángulo de 90°. Con la normal, por lo que avanza justo a lo largo de la superficie de separación entre ambos medios.
Si el ángulo de incidencia se hace mayor que el ángulo crítico, los rayos de luz serán totalmente reflejados.
La reflexión total no puede producirse cuando la luz pasa de un medio menos denso a otro más denso.
Las tres ilustraciones de la figura 6 muestran la refracción ordinaria, la refracción en el ángulo crítico y la reflexión total. La fibra óptica es una nueva aplicación práctica de la reflexión total. Cuando la luz entra por un extremo de un tubo macizo de vidrio o plástico, puede verse reflejada totalmente en la superficie exterior del tubo y, después de una serie de reflexiones totales sucesivas, salir por el otro extremo. Es posible fabricar fibras de vidrio de diámetro muy pequeño, recubrirlas con un material de índice de refracción menor y juntarlas en haces flexibles o placas rígidas que se utilizan para transmitir imágenes. Los haces flexibles, que pueden emplearse para iluminar además de para transmitir imágenes, son muy útiles para la exploración médica, ya que pueden introducirse en cavidades estrechas e incluso en vasos sanguíneos.
La reflexión es además la propiedad del movimiento ondulatorio por la que una onda retorna al propio medio de propagación tras incidir sobre una superficie. Cuando una forma de energía —como la luz o el sonido— se transmite por un medio y llega a un medio diferente, lo normal es que parte de la energía penetre en el segundo medio y parte sea reflejada. La reflexión regular (en la que la dirección de la onda reflejada está claramente determinada) cumple dos condiciones: el rayo incidente y el rayo reflejado forman el mismo ángulo con la normal (una línea perpendicular a la superficie reflectante en el punto de incidencia), y el rayo reflejado está en el mismo plano que contiene el rayo incidente y la normal. Los ángulos que forman los rayos incidente y reflejado con la normal se denominan respectivamente ángulo de incidencia y ángulo de reflexión. Las superficies rugosas reflejan en muchas direcciones, y en este caso se habla de reflexión difusa.

Para reflejar un tren de ondas, la superficie reflectante debe ser más ancha que media longitud de onda de las ondas incidentes. Por ejemplo, un pilote que sobresale de la superficie del mar puede reflejar pequeñas ondulaciones, mientras que las olas de gran tamaño pasan alrededor de él. Los sonidos estridentes, que tienen longitudes de onda muy cortas, son reflejados por una ventana estrecha, mientras que los sonidos de mayor longitud de onda lo atraviesan. En la atmósfera, algunas partículas pequeñas de polvo reflejan sólo las longitudes de onda más cortas de la luz solar, correspondientes a los tonos azules.
                                                             Propiedades de las Ondas

 Las ondas electromagnéticas no necesitan un medio material para propagarse. Así, estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a la Tierra desde el Sol y las estrellas. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío a una velocidad c = 299.792 km/s. Todas las radiaciones del espectro electromagnético presentan las propiedades típicas del movimiento ondulatorio, como la difracción y la interferencia. Las longitudes de onda van desde billonésimas de metro hasta muchos kilómetros. La longitud de onda (l) y la frecuencia (f) de las ondas electromagnéticas, relacionadas mediante la expresión l·f = c son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características.

                                                           Superposición e Interferencia

Es el efecto que se produce cuando dos o más ondas se solapan o entrecruzan. Cuando las ondas interfieren entre sí, la amplitud (intensidad o tamaño) de la onda resultante depende de las frecuencias, fases relativas (posiciones relativas de crestas y valles) y amplitudes de las ondas iniciales .
Por ejemplo, la interferencia constructiva se produce en los puntos en que dos ondas de la misma frecuencia que se solapan o entrecruzan están en fase; es decir, cuando las crestas y los valles de ambas ondas coinciden. En ese caso, las dos ondas se refuerzan mutuamente y forman una onda cuya amplitud es igual a la suma de las amplitudes individuales de las ondas originales. La interferencia destructiva se produce cuando dos ondas de la misma frecuencia están completamente desfasadas una respecto a la otra; es decir, cuando la cresta de una onda coincide con el valle de otra.
En este caso, las dos ondas se cancelan mutuamente. Cuando las ondas que se cruzan o solapan tienen frecuencias diferentes o no están exactamente en fase ni desfasadas, el esquema de interferencia puede ser más complejo.
La luz visible está formada por ondas electromagnéticas que pueden interferir entre sí. La interferencia de ondas de luz causa, por ejemplo, las irisaciones que se ven a veces en las burbujas de jabón. La luz blanca está compuesta por ondas de luz de distintas longitudes de onda. Las ondas de luz reflejadas en la superficie interior de la burbuja interfieren con las ondas de esa misma longitud reflejadas en la superficie exterior.
En algunas de las longitudes de onda, la interferencia es constructiva, y en otras destructiva. Como las distintas longitudes de onda de la luz corresponden a diferentes colores, la luz reflejada por la burbuja de jabón aparece coloreada. El fenómeno de la interferencia entre ondas de luz visible se utiliza en holografía e interferometría.
La interferencia puede producirse con toda clase de ondas, no sólo ondas de luz. Las ondas de radio interfieren entre sí cuando rebotan en los edificios de las ciudades, con lo que la señal se distorsiona. Cuando se construye una sala de conciertos hay que tener en cuenta la interferencia entre ondas de sonido, para que una interferencia destructiva no haga que en algunas zonas de la sala no puedan oírse los sonidos emitidos desde el escenario. Arrojando objetos al agua estancada se puede observar la interferencia de ondas de agua, que es constructiva en algunos puntos y destructiva en otros.
Interferencia de fuentes puntuales

Este diagrama de interferencias se formó moviendo dos varillas rítmicamente arriba y abajo en una bandeja de agua. Se pueden observar efectos similares al meter y sacar del agua dos dedos u observando a dos patos nadando en un estanque cerca uno de otro. Las ondas procedentes de una de las fuentes puntuales (la varilla, el dedo o el pato) interfieren con las que proceden de la otra fuente. Si dos crestas llegan juntas a un punto, se superponen para formar una cresta muy alta; si dos valles llegan juntos, se superponen para formar un valle muy profundo (interferencia constructiva). Los anillos brillantes y oscuros son zonas de interferencia constructiva. Si la cresta de una fuente llega a un punto a la vez que el valle de la otra, se anulan mutuamente (interferencia destructiva). Las líneas oscuras radiales son zonas de interferencia destructiva.
Interferencia de ondas
Cuando dos pulsos que avanzan por una cuerda se encuentran, sus amplitudes se suman formando un pulso resultante. Si los pulsos son idénticos pero avanzan por lados opuestos de la cuerda, la suma de las amplitudes es cero y la cuerda aparecerá plana durante un momento (A). Esto se conoce como interferencia destructiva. Cuando dos pulsos idénticos se desplazan por el mismo lado, la suma de amplitudes es el doble de la de un único pulso (B). Esto se llama interferencia constructiva.



jueves, 3 de julio de 2014

Tipos de Ondas ondulatorias

  • Según la dirección de propagación:

    • Ondas Transversales: Estas ondas hace que las partículas del medio oscilen perpendicularmente a la dirección de la propagación de la onda. Las ondas en un piano y en las cuerdas de una guitarra son ejemplos representativos de ondas transversales.






    • Ondas Longitudinales: Estas Ondas hacen que las partículas del medio se muevan paralelamente a la dirección de propagación de la onda. Un ejemplo de este tipo de ondas es el sonido y la forma en que transmitir algunos fluidos, los gases y los plasmas.



    • Ondas Superficiales: Estas ondas son una mezcla de ondas longitudinales y transversales. es decir cuando las ondas profundas en un lago o en el océano son longitudinales, pero en la superficie del agua las partículas se mueven tanto paralela como perpendicularmente a la dirección de la onda


 Según el medio en que se propaguen:
    • Ondas mecánicas, que no se propagan por el vacío y necesitan un medio material por el que viajar, como es el caso del sonido

    • Ondas electromagnéticas, que no necesitan un medio para su movimiento y viajan a través del espacio con la velocidad de la luz 3*108. 
    • Ondas gravitatorias, se propagan por el vacío y son perturbaciones que afectan a la geometría espacio-tiempo